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_Abstract

A three-dimensional elect.ror[~ag[wtic ’'1C code has
beendeveloped on the 512 node Intel Touchstone Delta
MIMD parallel computer. This code is based on the
General Concurrent PI1C algorithm which uses a do-
main decomnposition to divide the computation arnong
the processors. The 3D simulation domain can be par-
titioned into 1-, 2-, or 3-dimensional subdomnains. Par-
ticlesmust be exchanged between processors as they
move among the subdomains. The Intel Delta allows
one to usc this code for very-large-scale simulations
(i.e. over 10s particles and 10¢ grid cells). The par-
allel efliciency of this code is measured, and the overall
code performance on the Delta is compared with that
on Cray supercomputers. It is shown that our code
runs with a high parallel efficiency of >95% for large
size problems. The particle push time achieved is 115
nsecs/particle/time step for 162 million particles on 512
nodes. Comparing with the performance on a Cray C90,
this represents a factor of 58 speedup. The code uses a
finite-diflcrence  leap frog method for field solve which is
significantly more eflicient than fast Fourier transforms
on paralel computers.

1. Introduction

Computer particle smulation has become a standard
method in space and laboratory plasma physics re-
search. A particle-in-cell (PIC) code simulates plasina
phenomena by modeling a plasma as hundreds of thou-
sands of test particles and following the evolution of the
orbits of individual test particles in the self-consistent
electromagnetic field. Each tiine step in a PIC code
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consists of two major stages. the particle push and the
field solve. Since the particles can be located anywhere
within the simulation domain but the macroscopic field
guantities are defined only on discrete grid points, the
particle push uses two interpolation (gather/scatter)
steps to link the particle orbits and the field compo-

nents.

While the particle simulation method allows one to
study the plasma phenomena fromn the very fundamen-
tallevel, the scope of the physics that can be resolved
in a simulation study critically depends on the compu-
tational power. The computational time/cost and comn-
puter memory size restricts the time scale, spatia scale,
and number of particles that can be used in a simula-
tion. The cost of running three dimensional electromag-
netic P1C calculations on existing sequential supercom-
puters limits the problems which can be addressed.

Recent advances in massively paralel supercomput-
ers have provided computational possibilities that were
previously not conceivable. The object ives of thisst udy
are to develop a three-dimensional electromaguetic PIC
code for MIMD parallel computers and to test the full
potential of using parallel computers for very-large-scale
particle sirnulations. In section 2, our 3D PIC code is
discussed. ‘I'his code is implemented on the 512 node
Intel Touchstone Delta paralel computer at Caltech us-
ing the Genera] Concurrent P1C (GCPIC)algorithm(1].
Section 3 discusses the code petformance. The paralel
efliciencies of running the code for fixed problems and
scaled problems willbe discussed, and the overal per-
formance of the code on the Intel Delta will be comnpared
with that on Cray supercomputers. Section 4 contains
asummary and conclusions.

2. A Parallel 3D Electromagnetic PIC Code

The Algorithm



The basic procedures of a generic electromagnetic
PIC code arc as follows:
(1) Define the initial conditions of the particles and
fields;
(2) Distribute the charge and current of the particles to
the nearby grid points to obtain the charge density p
and current density J a each grid point;
(3) Solve the Maxwell equations
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to obtain the electromagnetic field at each grid point;
(4) Interpolate the electromagnetic field on the particle
position to obtain the force on each particle; and

(5) Update the particle velocity and position from the
Newton's second law
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In our code, the relativistic equation of motion is used
for particle push. The trgectory of each particle is inte-
grated using the usua time-centering leapfrog scheme:
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where the superscripts n 4+ 1/2 and n + 1 represents the
tirme step, and the v is the relativistic gamma.

The ficld equations are most commonly solved by
transform methods such as fast Fourier transform
(FFT).However, transform methods are ‘(global” meth-
ods because the field information from every point in
the simulation domain contributes to each single ficld
harmonic. in general, global methods are not very efli-
cient for parallel computers because they involve a large
atmount of interprocessor communications which may
eventually become the bottleneck. For a code to run
efliciently in paralel, a method that updates the field
purely from the local data is preferred.

Fromthe Maxwell’s equations, one notes that eq(1)
will aways be satisfied as long as the charge conserva-~

tion condition o
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is satisfied, hence, theelectromagnetic field can be up-
dated from only the two curl Maxwell’s equations (3)
and (4) if onc can enforce rigorous charge conservation
numerically. A rigorous charge conservation method has
been developed in the Magic and Quicksilver codes by
Sandia National Iaboratories[2] and the Tristan code by
Buneman et al[3,4]. In this scheme, the electromagnetic
field is updated locally by finite-difference leapfrogging:
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This scheme also requires the use of a complex stag-
gered grid mesh systern in which F' is defined a mid-
points of cell-edges while Bis defined at midpoints of
cell-surfaces. This ensures that the change of B flux
through a cell surface equals the negative circulation of
E around that surface and the change of E flux through
a cell surface (offset grid) equals the circulation of B
around that surface minus the current through it. ‘I'his
frnite-difference leapfrogging scheme is used for our field
solve.

Implementation on a MIMD Parallel Coruputer

There are basically two types of parallel comput-
ers: Multiple-Instruction Multiple-Data (MIMI)) and
Single-instruction Multiple-Data (SIMD). In a MIMD
parallel computer, each processor may execute a sep-
arate stream of instructions while in a SIMD parallel
computer, each processor executes the same instructions
simultaneously.

Our 3D electromagnetic PIC code is implemented on
aMIMD paralel computer, the Intel Touchstone Delta
computer at Cal tech. The Intel Touchstone Delta sys-
tem consists of an ensemble of nodes which are inde-
pendent processors with its own memory connected as a
two-ditnensional mesh. There are 512 numerical nodes.
Each numerica node is 1860 chip based. The node op-
erates at 40 MHz and has a peak speed of 80 single-
precision Mflops and 60 double-precision Mflops. The
available memory on Delta is about 12 Mbytes per node
or an equivalent of 6.1 Gbytes on all 512 nodes.

The code is implemented using the general concurrent
PIC (GCPIC) algorithm developed by lLiewer and De-
cyk[1]. The GCPIC algorithm is designed to make the
most computationally intensive portion of a PIC code,
the particle computation, run efliciecutly on a MIMD
parallel computer. The algorithin uses a domain de-
composition to divide the computation among parallel
processors. kach processor is assigned a subdomain and
al the particles in it. When a particle moves from one



subdomain to another, it mustbe passed to the appro-
priate processors. Forthe code to run efficiently in par-
allel, the domain decomposition needs to be such that
the subdomains have roughly the same number of par-
ticles for load balance. in our code, the computation
domain can be partitioned into I-, 2-, or 3-dimensional
subdomains ( ‘(slabs”, “rods”, or ‘(cubes”).

The code is written using Express-Fortran and com-
pilediuto a single object code. lath processor runs
the object with a separate program counter. Each pro-
cessor also has its own particle arrays and field arrays.
T'he computations in cach processor arc linked together
through message-passing and global communications.
Three mgjor message-passing operations arc involved in
the code: particletrade, guard cell exchange , and guard
cell summation. Guard cells are the neighboring grids
outside a processor’'s subdormain boundary, also stored
by the processor, which are needed to insure that the
interpolations (gather/scatter) can be performed locally
(no interprocessor communication).

Particletrade passes the particles between processors.
If a particle went out of bounds of a subdomain bound-
ary, it is placed in a buffer. When al particles have been
checked, the buffer is passed to the neighboring proces
sors, and at the same time, incoming particle buffers
arc received from the neighboring processors. Guard
cell exchange and guard cell summation arc for commu-
nication of fieldinformation. When updating the field,
the ¥ and I field in guard cells need to be exchanged
between neighboring processors so all processors have
the updated conditions. When depositing the current,
those particles near a subdomain boundary will con-
tribute to the current on the grid points on both sides
of this boundary. Hence, the guard cell currents need
to be passed to the neighboring processors and added
to the currents at the appropriate interior points of the
neighboring processors.

Fig. 1 shows the flow chart of our parale 3D elec-
tromagnetic PIC code. Note that the rounded blocks
represent the steps in a sequential EM PIC code and
the four rectangular blocks are the ncw steps needed in
the parallel message-passing code.

3. Performance Analysis

The performance of our parallel 3D electromagnetic
PI1C code has been measured in three ways: 1) fixed
problem size analysis; 2) scaled problem size analysis;
and 3) comparison of the performance with that on Cray
supercomputers.

An important measure of the performance on a con-
current computer is the parald efliciency € which mea

sures the effects of communication overhead and load
imbalance[5]. If there were no communications involved
and the processor loads were perfectly balanced, the
parallel efliciency would be ¢ = 100%. In this paper
wc shall focus only on the effect duc to communication
overhead. The simulation runs used in this section all
have near-perfect load balance because the particle dis-
tributions arc nearly uniform.(Dynamic load balance

for non-uniform particle distributions has been investi-

gated in a2D PIC code by Ferraro et al[6].)
Fixed Problem Size Anaysis

In afixed problem size analysis, we compare the times
to run the same problein on an increasing number of
processors. Since the total problem size is fixed, the
problem size on each individual processor decreases as
the number of processors increases.

Let us define 7'(N) to be the time elapsed on a par-
allel computer with N nodes. For a problem that can
be fit into a minimum of MNmin processors, the parallel
efficiency N > Npiin processors is defined by

g_'({\{rln'n_)_Nmin
C(N) = T(N)N (1)

For the fixed problem size analysis, we have consid-
cred two problems. ‘Jhe size of the first problem (F1)
is 2.22 x 10°particles and 32°= 32768 grid cells (~ 7
particle/cell). This problem can be fit on a single pro-
cessor on Delta. The second problem (F2) has 1.4 x 10
particles and 64°= 2.62 x 10°célls (~ 54 particle/cell).
F2 requires a minitmum of 64 processors to run. F1
and F2 were run using processors from Np= Ny,in to
Np= 512, 3D) domain partitions are used. The parallel
efficiencies for F1 and F2 as a function of N, are shown
in Fig. 2a and the run times for different portions of
the code are shown in Fig. 2b.

The results show that the efficiency for F1 drops sig-
nificantly as the processor number isincreased (¢(512) =~
24%). ‘This is not surprising because the size of Flis
too small to run on the paralel computers. For in-
stance, when we divide the computation in a 3D par-
tit ion using 8 X 8 x 8 = 512 processors, each processor
will only have a computation domain of 4°grid points
and about only 430 particles. With such a small size
problem on each node, the computation time becormes
smaller than the internode communication time. The
low efficiency simply reflects the fact that for F1 the
code is dominated by internode communications. On
the other hand, we find that ¥2 performs much better
then F1 on multiple nodes because of its much larger
problem size. (When ¥2 is divided into 512 processors,
each node has acomputation domain of 82 grid points



and about 2.77 x 10'particles. ) The parald efficiency
for F2 stays at > 95%. This demonstrates that a paral-
lel computer is best suited only for large size problemns.

Scaled Problem Size Analysis

We now study in detail the parallel efficiency for
scaled problem size. In a scaled problem size analysis,
we keep the problem size oneach individual processor
fixed while increasing the total number of processors.
The total problem size is then proportiona to the num-
ber of processors used, The parallel efficiency in a scaled
problem size analysis is defined as

(11)

We consider two cases for scaled problem analysis. In
the first case (S1), each node has 32°cells and about
2.22 x 10°particles (~ 7 particles/cell). When Sl is
loaded to al 512 nodes, the size of the total problem
becomes 256°(1 6.8 million) cells and 114 million par-
ticles In the second case (S2), each node has16 cells
and 3.15 x 10°particles (~ 77 particles/cell). ‘I'he size
of S2 on all 512 node is then 128°(2.1 million) cells and
162 million particles. We note that the memory size re-
quired to run S1 and S2 on each node are 10.4 Mbytes
and 11.6 Mbytes respectively. Considering the memory
limit of 12 Mbytes per node, S2 represents about the
largest problem that one can fit onto the Touchstone
Delta system. When S2 is loaded to all 512 nodes of
the Delta, the total memory size is an eguivalent of 5.9
Ghbytes.

The parallel efliciencies for S1 and S2 as a function of
the processor number arc shown in Fig. 3. The results
show that a high parallel efficiency of ¢>95% has been
achieved.

Therun times used by different portions of the code
for S1 and S2 arc shown in Fig. 4 as a function of
the processor number. We find that the times the code
spenids on particle move, field update, and current de-
posit within each node (Tim ove, L current, 1 idupdate) stay
as @ constant. This is because these three code portions
do not involve internode communications, and our do-
main decoinposition has assigned an equal amount of
calculation to each processor. Thetimes spent by the
code portions that involve internode communications
(Ttrader Tgqp1, and Tgdsm ) increases somewhat as the
node numnber increases. However, due to the large prob-
lem size on each node, the run time is dominated by
“productive” calculations. For the problems considered
here, the most commputation intensive portion is particle
push within each node. Hence, the increase of commu-
nication only has a miniimum eflect on the overall code

performance. As Fig, 4 shows, the total run time is

approximate a constant 88 the processor number IS in-
creased.

In our calculations, the guard cell number and the
size of communicated message isindependent of the pro-
cessor number. However, the timing results in Fig. 4
shows that the guard cell communication time increases
as the processor number increases. This is apparently
a result of the Delta Mesh contention since the number
of messages and message size exchanged by each pro-
cessor is constant. Wc also note that, in both cases,
the field solve time represents only a very small frac-
tion of the total time (Zficta/T101< 2.4% for S1 and
Tyie1a/Tiot < 0.5% for $2). Asa test, in some other sim-
ulations we have used ~ 5 particles/ceil. Fven at such
a low particle number/grid ccl] ratio, we find the field
solve still takes < 4% of the total time.This demon-
strates that the finite difference field solve is extremely
eflicient for parallel computers.

One of the most important measure of a PIC code's
performance is the particle push time per particle per
time step. The particle push time includes the times
spent on moving particles, depositing currents, and re-
lated interprocessor communications (i.e. particle trade
and guard cell surnmation): 7push = Imove + Ttrade -t
Teurrent+1gdsm - For S1 and S2, the particle push times
on the 512 node Delta arc as follows:

Tpush =~ 119 nsecs/particle/time step
for S1(114 million particles, 256°grid cells)
Tousn =115 rwé2cs/particleftirrle step
for S2(162 million particles, 128'grid cells).

Perforinance on Delta vs. Performance on Cray

Finaly, we compare the overall performance of the
code on Delta with that on Cray supercomputers. Two
Cray computers were used for this analysis. The first
one is the Cray Y-MP at JPL. The memory limit on the
JPL Cray Y-MP is 16 Mwords or 128 Mbytes. The sec-
ond one is one of the larges Cray supercomputer avail-
able, the Cray G90 at NASA Ames (The Von Neuman).
The memory himit on the NASA Ames Cray C90 is 128
Mwords or 1.024 Gbytes. The memory limit on Intel
Delta is about 6 times larger than that of the Cray C90.

Other than the message-passing and global communi-
cations, the Cray version of the code is identical to the
parallel version, The Cray version of the code is conr
piled using the Cray Fortran compiling system’s auto-
tatic vectorization and optimization. However, no re-
writing was done to optimize the gather/scatter for the
Cray. All the Cray runs were carried out on a single
CPuU.

In Fig. 5 we plot the total run times for the S1 and



S2cases as a function of the “problemn size”. The unit
of the problem size is defined as the problewn size on
1 node of theDelta computer. For S1 (Fig. 5a), the
size unitis 2.22 x 10°particles and 323 grid cells. For
s2 (Fig. Bb), thesize unit is 3.16 x 10® particles and
16°grid cells. Due to the memory limits on the Cray
supercomputer,not all§1 and S2 problems can be run
on the Cray. For instance, the largest S1 problem wc ran
onthe Cray C90 was size ~ 134.6 (164°grid cells and
2.98 x 10 particles) and the larges S2 problem we ran
was size =~ 91.13 (72°grid cells and 2.9x 107 particles).

To compare the performance, we shall define the
Delta speedup as

S = (Tyar/size)cray (12)
(’]‘tot/SiZC)I)elta
For small problems, the Cray supercomputer per-
forms much better than the parallel computer. Com-
paring to Cray C90, the speedup factors at size == 1 are
S~ 0.10 for S1 and §~ 0.12 for S2. However, as the
problem Size increases, the time spent on the Cray is ap-
proximately linear in the Log scale. While on the Delta,
due to the high parallel efficiency, the total run times for
S 1 and S2 stay almost an constant as both the problem
Size and processor number are increased. At Size =— 64,
wc find the speedup of the Delta over the Cray C90 has
becomes S~ 4.9 for S1 and S o~ 7.42 for S2. Kxtrapo-
lating the run times on Cray to size == 512, if one had
a Cray C90 large enough to run the size = 512 prob-
lems, then the speedup of Delta over Cray C90 would
be about S =~ 49 for S1 and S =~ 58.7 for S2.

5. Summary and Conclusions

A MIMD parallel 31) electromagnetic PIC code has
been developed on the 512 node Intel Touchstone Delta
system. This code is based on the General Concurrent
PIC (GCPIC) algorithmn[1] which uses a domain decom-
position to divide the computation among the proces-
sors. Three major message-pa9sing operations, particle
trade, guard cell ezxchange, and guard cell sumiation,
are used to link the computations in different proces-
sors together, With 12 Mbytes memory limit per node
and atota of about 6 Gbytes on all 512 nodes, the Intel
Delta system alows our code to run simulations using
over 10°particles and 106 grid cells. The parale efli-
ciency of this code is evaluated using both fixed problem
analysis and scaled problem analysis. It is shown that
our code runs with a high paralel efficiency of € >95%
for large size problems. The particle push time we have
achieved is 115 rlsccg/particle/time step for 162 million
particles on 512 nodes. ‘I'he overall performance of the

code on the Delta is dso compared with that on Cray
supercomputers. Comparing with the runs on a Cray
(90, our code has achieved a factor of 58 spcedup on
the Delta.

in the code, the electromagnetic field is updated
locally using a rigorous charge-conservation finite-

difference leap frog method. We find, for parallel com-
puters, a finite difference field solve is significantly more

efficient than fadt Fourier transforms. Qur results shows
that the finite difference field solve generally takes < 1%
of the total CPU time for problems with about ~ 77

particles/cell and £ 4% even for problems with~ 5
particles/cell.
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Figure Captions

Figure 1: 3D electromagnetic GCPIC code flow

F'igure 2: Code performance for fixed problems. a)
Parallel efficiency. b) Times for various code portions.

Figure 3: Code performance for scaled problems. par-
ale efliciency.

Figure 4. Code performance for scaled problems:
tunes for various code portions.

Figure 5. Run time on Delta vs. run time on Cray.



3D Electromagnetic GCPIC Code Flow
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